Description:

Rainwater filter for bigger roof areas. The 3P Volume Filter has to be installed in a pilot shaft ($(1200 \mathrm{~mm}$). Normally standard concrete shafts are used. The filter can be delivered to the site yet pre-assembled in the shaft.

Two step cleaning system, therefore high level of filtering efficiency, independent of flow rate.

Due to the steep inclination of the filter cartridge the dirt is continuously cleaned away into the sewer. The connection to the sewer is installed at the shaft. The dirt falls down on the bottom of the shaft and is washed away with the next strong rainfall.

How it works:

1. The incoming rainwater is backed up in the collection pan and is then equally distributed across the cascades = principle of overflow
2. Pre cleaning through the cascades, coarse dirt particles are led across the primary filter cascades directly to the sewer
3. Pre-filtered water then flows over the secondary filter sieve (Mesh size 0,4 x $1 \mathrm{~mm})$, due to the special mesh structure and the steep situation of the sieve, any dirt falls directly down onto the bottom of the shaft, in case of heavy rainfalls, the filter has more loss, as the water washes away the filtered dirt into the sewer

Technical Data:

Filter according to DIN 1989-2, Typ C
Inlet rainwater: $2 \times$ DN 250
Outlet to storage: DN 200
Outlet to sewer: DN 250
Height difference between inlet and outlet: 300 mm , mid of tube

Material Filter corpus: Stainless steel 4016
Material Filter sieve: Stainless steel 1.4301
Mesh size: $0,4 \times 1 \mathrm{~mm}$
Legs $=$ Thread rods M10 with screw nut made of stainless steel, Length 250 mm

Weight: $39,5 \mathrm{~kg}$

Relative connection capacity according to DIN 1986: for roof areas up to $1347 \mathrm{~m}^{2}$ at a rainfall intensity of $300 \mathrm{I} /$ (sxha)

Because of a Bypass-Installation a bigger area can be connected.

Inlet rainwater:	$2 \times$ DN 250
Outlet to storage:	DN 200
Outlet to sewer:	DN 250

Blinding plates are included
Height difference between inlet and outlet: 300 mm , measured mid of the tube

The filter has to be cleaned depending on the contamination 1 - 2 times during the year

4. The cleaned water is being absorbed in the lower collection pan and directed through a tube DN 200 into the storage
5. Dirt goes to the sewer through the shaft

A 670 mm
B 680 mm
C 575 mm
D 980 mm
E 320 mm
F 275 mm
G 880 mm

Example 1:

Installation of the filter in a pilot shaft

Example 2:

Installation of the filter in front of several concrete tanks which are situated in a row

Source: Prof. Dr.-Ing. Mathias Uhl Muenster University of Applied Sciences

80% of the average intensity of rainfall in Germany is under $15 \mathrm{I} /($ sxha), resulting a volume flow rate of $3,65 \mathrm{I} / \mathrm{s}$ with a roof area of $2433 \mathrm{~m}^{2}$.

Diameter of tube	maximum flow rate	connectable area max. $200 \mathrm{I} /($ sxha)	connectable area max. $300 \mathrm{I} /($ sxha)
DN	I / s	m^{2}	$\mathrm{~m}^{2}$
250	73	3650	2433

Text for invitation of tenders:

Pos. Quantity Article
Price in $€$
1.1 \qquad 3P Volume Filter VF6
Filter for the installation in a concrete shaft (01200 mm)
Inlet rainwater: $2 \times$ DN 250, Outlet to storage: DN 200
Height difference between inlet and outlet (center): 300 mm
Filter inserts with integrated filter sieve: $0,4 \times 1 \mathrm{~mm}$, Material: stainless steel Connection capacity according to DIN 1986: for roof areas up to $2433 \mathrm{~m}^{2}$ at a rainfall of $300 \mathrm{I} /(\mathrm{sxha})$
1.2 \qquad Concrete shaft for 3P Volume Filter VF6 including installation of the Volume Filter VF6 Inner diameter 1200 mm , Height 75 cm , Conus $\emptyset 100$ / $60-60 \mathrm{~h}$ with Goebel lid resilient up to 5 t Shaft has to be equipped with 3 KG -bushings and Forsheda Seals Inlet rainwater: $2 \times$ DN 250, Outlet to storage: DN 200, Outlet to sewer: DN 250
The bottom of the shaft should have a diagonal decline $(5 \mathrm{~cm})$ to the channel interface

Optimal installation:

If the size of the roof or the diameters of the tubes should vary from the specifications / requirements, you can make an installation according to the DIN as demonstrated below.

Advice:

On demand the filter can be equipped with only one inlet. Please indicate in order. The hole then will be closed with a blinding plate.

Packing unit
3P Volume Filter VF6:
Pallet: 3 pieces

